PARASTOMAL HERNIA: IS PREVENTION WITH MESH BETTER THAN CURE?

Tim Eglinton
Christchurch Hospital, New Zealand

Mesh?... For Prevention??

Surgical mesh issues 'literally destroying in the raid.co.nz

National Opinion Business Tech World Sport Entertainment Lifestyle Total Notional Not

Surgical mesh problems persist

Mesh Down under M

Dedicated to support and information sharing for New Zealanders injured by surgical mesh.

Prevention of Parastomal Hernia (PH) with mesh

Incidence and consequences of parastomal hernia

Technique of prophylactic mesh insertion

Evidence

Clinical consequences of PH

Asymptomatic

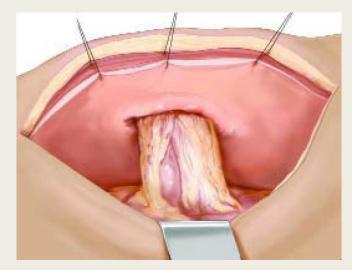
Pain, difficulty pouching, leaks, skin excoriation

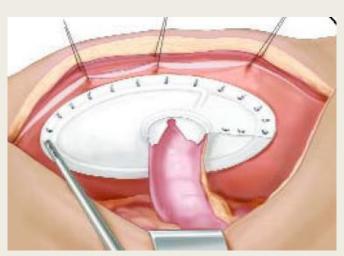
Incarceration, obstruction, strangulation

1/3 of parastomal hernias require operative intervention

Surgical treatment for PH

Primary repair of fascial defect


- 46 to 100% recurrence


Relocation

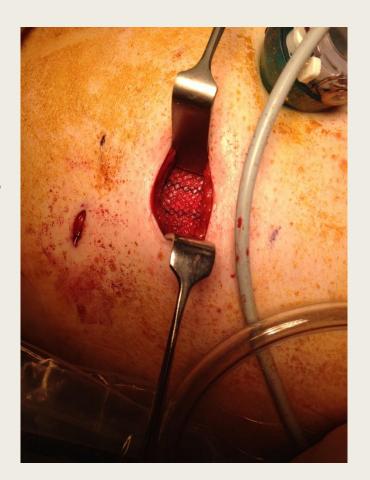
- 32% recurrence
- high morbidity

Mesh repair

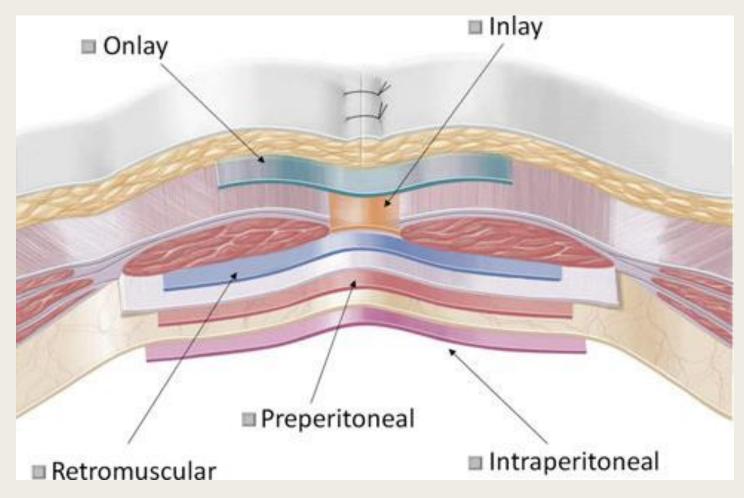
- 0 to 33% recurrence
- mesh related morbidity

Prophylactic Mesh for PH

First described by Bayer, 1986


Adopted routinely by some for permanent ostomies

Technical considerations


Plane of mesh placement

Open or laparoscopic

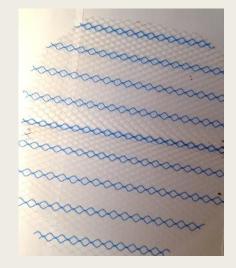
Synthetic or biologic mesh

Technique: Plane of Mesh Placement

Hernia (2012) 16:239-250

Technique: Mesh options

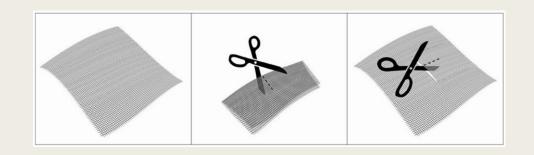
Synthetic

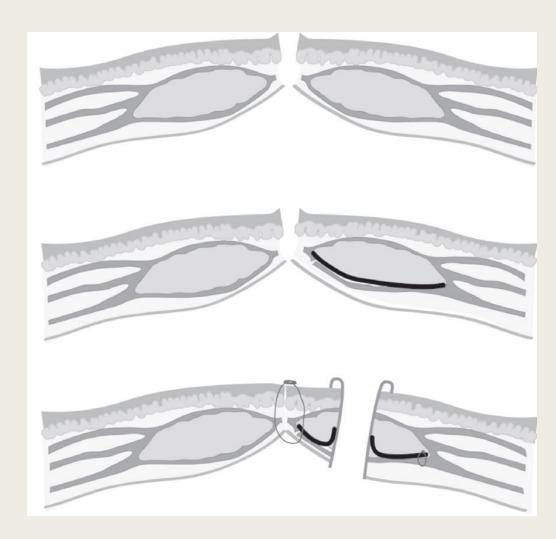

- -dense inflammatory response
- -risk of infection, shrinkage, erosion, fistula
- -minimised with macroporous lightweight mesh

Composite

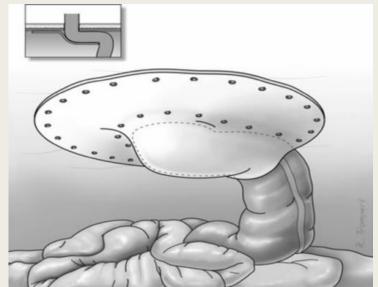
- -additional surface allowing contact with bowel
- -expensive

Biologic

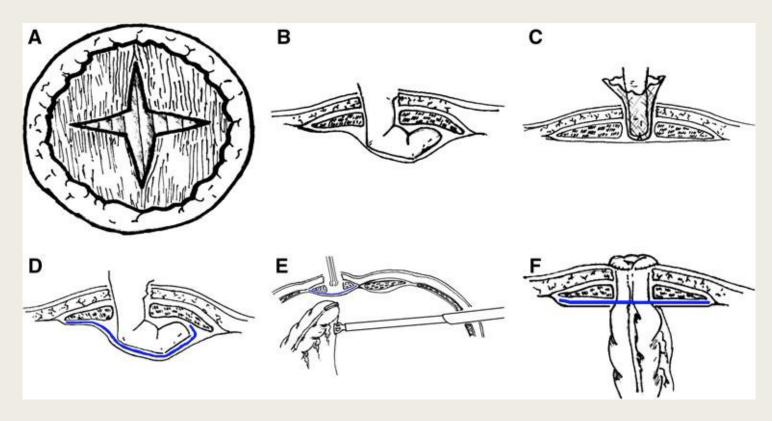

- -better tissue compatibility, less adhesions
- -expensive, ?long term durability



Technique: Open retromuscular/sublay


Brandsma et al. Trials 2012, 13:226

Technique: Laparoscopic Placement


"Keyhole"

"Sugarbaker"

Sublay mesh in laparoscopic APER

Janson A. Hernia (2010) 14:495-498

Sublay mesh in laparoscopic APER

Evidence for prophylactic mesh

Randomized trial

Randomized clinical trial of the use of a prosthetic mesh to prevent parastomal hernia

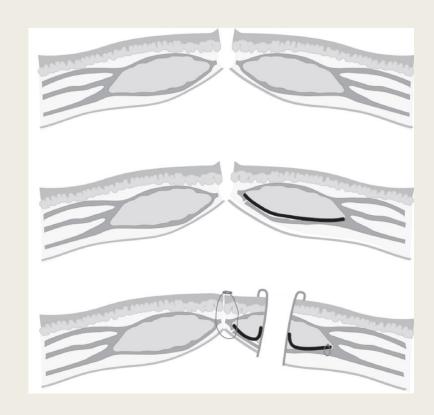
A. Jänes¹, Y. Cengiz¹ and L. A. Israelsson²

¹Department of Surgery, Sundsvalls sjukhus, Sundsvall, and ²Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden Correspondence to: Dr A. Jänes, Kirurgkliniken, Sundsvalls sjukhus, SE-851 86 Sundsvall, Sweden (e-mail: Artur.Janes@lvn.se)

Lightweight polypropylene mesh, sublay

Parastomal Hernia

Controls 8/18


Mesh 0/16

Mesh complications

Infection 0%

Fistula 0%

Pain 0%

A systematic review on the use of prophylactic mesh during primary stoma formation to prevent parastomal hernia formation

J. Shabbir*, B. N. Chaudhary† and R. Dawson‡

*Department of Colorectal Surgery, Arrowe Park University Teaching Hospital, Wirral, UK, †Department of Colorectal Surgery, Frenchay Hospital, Bristol, UK and ‡Department of Colorectal Surgery, University Hospital of North Staffordshire, Stoke on Trent, UK

	Mesh		No mesh			Risk ratio, M-H,	Risk ratio, M-H,	
Study or subgroup	Events	Total	Events	Total	Weight	fixed, 95% CI	fixed, 95% CI	
Hammond et al.	0	10	3	10	10.1%	0.14 [0.01, 2.45]		
Janes et al.	2	27	17	27	49.3%	0.12 [0.03, 0.46]		
Serra-Aracil et al.	6	27	14	27	40.6%	0.43 [0.19, 0.95]	_	
Total (95% CI)		64		64	100.0%	0.25 [0.13, 0.48]	•	
Total events	8		34				0.01 0.1 1 10 1 Mesh No mesh	

Morbidity mesh group:

- 1 peristomal infection
- 1 stomal necrosis (unrelated to mesh)

DCR Guideline 2015

"...mesh may be placed at the time of permanent ostomy creation to decrease parastomal hernia rates.

Grade of recommendation: Strong recommendation based on moderate-quality evidence, 1B."

Recent Studies

Vierimaa et al DCR 2015

RCT n=83, lap APER, intraperitoneal composite mesh vs control NO DIFFERENCE IN PH RATES

Fleshman et al DCR 2014

RCT n=113, permanent ostomy, sublay biological vs control NO DIFFERENCE IN PH RATES

Nikberg et al Int J Colorectal Dis 2015

Retrospective n=206, sublay synthetic NO DIFFERENCE IN PH RATES

Clinical Significance of PH

Many parastomal hernias may be asymptomatic

QoL not assessed in trials of mesh prophylaxis to date

What is the rate of reoperation for parastomal hernia? Historically 30%

Trials; 25/128 (19%) PH repaired

Swedish study 4/47 (9%) PH repaired over long term f/u

Unanswered Questions in 2016

- Does mesh prevent PSH?
- What are the rates of mesh related complications (erosion/infection)?
- Does prophylactic mesh effect QoL?
- Does prophylactic mesh significantly decrease PSH repair?

- 38 studies of prophylactic PSH mesh identified
- 10 RCTs included for meta-analysis
- 649 patients
- Does prophylactic mesh prevent PSH?
- What are the rates of mesh related complications (erosion/infection)?
- Does prophylactic mesh effect QoL?
- Does prophylactic mesh significantly decrease PSH repair?

A Cross, P Buchwald, F Frizelle, T Eglinton. Systematic review of prophylactic mesh to prevent parastomal hernia.

BJS 2016. Accepted Article.

Updated Systemic Review 2016 Does mesh prevent PSH?

	Mesh No m		mesh Odds Ratio		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Brandsma, 2014	4	75	12	75	12.3%	0.30 [0.09, 0.96]	
Fleshman, 2014	6	55	7	58	12.5%	0.89 [0.28, 2.84]	
Hammond, 2008	0	10	3	10	4.2%	0.10 [0.00, 2.28]	
Janes, 2009	2	27	17	27	9.4%	0.05 [0.01, 0.24]	
Lambrecht, 2015	2	32	12	26	9.5%	0.08 [0.02, 0.40]	
Lopez-Cano, 2012	9	19	15	17	9.0%	0.12 [0.02, 0.68]	
Lopez-Cano, 2016	6	24	18	28	12.2%	0.19 [0.06, 0.62]	
Serra-Aracil, 2009	6	27	12	27	12.3%	0.36 [0.11, 1.17]	
Tarcoveanu, 2014	0	20	6	22	4.5%	0.06 [0.00, 1.18]	
Vierimaa, 2015	18	35	17	35	14.1%	1.12 [0.44, 2.86]	- -
Total (95% CI)		324		325	100.0%	0.24 [0.12, 0.50]	•
Total events	53		119				
Heterogeneity: Tau ² =	0.74; Ch	$ni^2 = 21$	0.01 0.1 10 100				
Test for overall effect:			-	,	.,		0.01 0.1 1 10 100' Favours mesh Favours no mesh

■ PSH

- mesh 16%
- no-mesh 36%
- (71% reduction in PSH)

A Cross, P Buchwald, F Frizelle, T Eglinton. Systematic review of prophylactic mesh to prevent parastomal hernia. BJS 2016. Accepted Article.

What is the rate of mesh related complications?

- Parastomal infection
- mesh 2.2%
- no-mesh 3.4% (P = 0.51)
- No mesh removal required
- Stomal necrosis low

[note: short follow up, 1 year in most studies]

A Cross, P Buchwald, F Frizelle, T Eglinton. Systematic review of prophylactic mesh to prevent parastomal hernia. BJS 2016. Accepted Article.

Does prophylactic mesh effect QoL?

■ No studies assessed symptoms, QoL from PSH

A Cross, P Buchwald, F Frizelle, T Eglinton. Systematic review of prophylactic mesh to prevent parastomal hernia.

BJS 2016. Accepted Article.

Does prophylactic mesh significantly decrease PSH repair?

- Overall PSH repair rates low
- Mesh 2.5%,
- no-mesh 8.9%
- -NNT = 16

[Short follow up, repair avoided due to poor results]

A Cross, P Buchwald, F Frizelle, T Eglinton. Systematic review of prophylactic mesh to prevent parastomal hernia. BJS 2016. Accepted Article.

PREVENT Trial 2016


- RCT, n=150, sublay mesh vs no mesh
- PSH 4.5% mesh, 24.2% no mesh
- QoL no difference
- Symptoms;
- 2x rate of stomal complaints in no-mesh group
- 2x rate of stomal appliance modification in no-mesh group

Conclusion

- Evidence supports that prophylactic mesh insertion at permanent ostomy creation;
- Significantly reduces PSH rates
- Is associated with minimal morbidity
- Reduces requirement for PSH repair
- lightweight synthetic mesh in a sublay position

...in the short term...

 Long term results regarding mesh complications and durability of prevention are required

